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Abstract: Considering the mutagenic effects and environmental concerns associated with 
commonly used fluorescent DNA probes, benzoxazoles and naphthoxazoles emerge as sensitive 
and safer alternatives. Benzoxazoles and naphthoxazoles are attractive from both chemical and 
biological perspectives. In addition to their multiple biological activities, these compounds exhibit 
promising photoluminescent properties and other characteristics that are favorable for use as 
fluorescent DNA probes. This systematic review investigates the potential of benzoxazole and 
naphthoxazole derivatives to bind to DNA and emit fluorescence. Scientific articles published 
in the last decade (2012-2023), selected based on pre-established inclusion criteria, indicate 
the potential of these compounds to bind to DNA and exhibit enhanced fluorescence emission. 
More than 70% of the compounds evaluated for DNA interaction were naphthoxazole derivatives. 
All seven assessed compounds showed DNA binding behavior, with intercalation being the 
predominant mode of interaction, particularly at increasing DNA concentrations. Furthermore, 
all reported benzoxazoles and naphthoxazoles exhibited increased fluorescence emission 
intensity with higher DNA concentrations. The results of this study indicate that benzoxazole 
and naphthoxazole derivatives have significant potential for use as fluorescent DNA probes and 
suggest considerable opportunities for further research and development in this area.
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Graphical Abstract

Introduction

Benzoxazoles and naphthoxazoles are versatile heterocycles 
featuring the oxazole nucleus. These compounds can 
be applied across various fields, ranging from biology 
and pharmacology to chemistry and materials science 
(Kurutos et al., 2022; Prabhala et al., 2022). While oxazoles 
exhibit chemical characteristics favorable for their application 
as fluorescent DNA probes, such as binding to receptors in 
biological systems through non-covalent interactions and 
attractive photoluminescent properties (Deng et al., 2022; 
Guerrero-Pepinosa et al., 2021; Phatangare et al., 2013; Rubio 
& Zanocco, 2016), studies on the interaction of benzoxazole 
and naphthoxazole derivatives with DNA have been sparsely 
reported in the literature.

Considering this context and the need to develop effective 
and less toxic DNA fluorescent probes, this systematic review 
provides insight into the potential of benzoxazole and 
naphthoxazole derivatives to bind to DNA and emit enhanced 
fluorescence. Additionally, the scarcity of peer-reviewed 
literature on the fundamentals of fluorescence emission 
and its biotechnological applications has encouraged us to 
introduce such concepts at the beginning of this study.

The principle of fluorescence: from light  
absorption to light emission

Luminescence is the phenomenon of emitting ultraviolet 
(UV), visible (UV–Vis), or infrared (IR) photons by an 
electronically excited species. The stimuli, which represent 
different modes of excitation, determine the classification 
of the various types of luminescence. Luminescence 
can be divided, for example, into electroluminescence, 
thermoluminescence, chemiluminescence, bioluminescence, 
and photoluminescence, according to whether the stimuli 
are electrical, thermal, chemical, biochemical, or luminous, 
respectively (Valeur, 2001).

Therefore, the emission of photons, accompanied by the 
relaxation of an absorbing species previously brought to an 
excited electronic state by the absorption of a photon, is 
referred to as photoluminescence. Within this classification, 
the concepts of fluorescence and phosphorescence are 
encompassed, distinguished by the nature of the excited 
state (Valeur, 2001).

Fluorescence is the emission of light from excited singlet 
electronic states (S1, S2). In singlet excited states, the 
electron in the excited orbital remains paired, that is, with 
the opposite spin to the second electron in the orbital of 
the ground state (S0) (Figure 1a). Consequently, the return 
to the ground state is allowed and occurs rapidly through 
the emission of a photon. Fluorescence emission rates are 
typically on the order of 10-8 s. This transition is referred 
to as a singlet-singlet transition since the spin remains 
unchanged after the promotion of the electron from the 
ground molecular orbital to the higher energy molecular 
orbital. In other words, the emission of photons, accompanied 
by the relaxation S1 → S0, is termed fluorescence (Figure 1b) 
(Lakowicz, 2006; Valeur, 2001).

Fluorescence typically occurs in aromatic organic 
molecules. Some examples include fluorescein, rhodamine 
B, 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP), and quinine 
(Figure 2). Fluorescent substances, such as those mentioned 
earlier, are referred to as fluorophores. Quinine, found in 
tonic water, was the first known and studied fluorophore, 
and it was from the study of this fluorophore that the first 
spectrofluorometers were developed in the 1950s (Lakowicz, 
2006; Valeur, 2001). Except for lanthanides, atoms generally 
do not fluoresce in condensed phases, unlike aromatic organic 
molecules (Lakowicz, 2006).

When excited by photon absorption, fluorophores can 
return to the ground state with fluorescence emission. 
However, other relaxation pathways are also possible, such 
as direct return to the ground state without fluorescence 
emission, referred to as internal conversion; intersystem 
crossing, possibly followed by phosphorescence emission; 
intramolecular charge transfer; and conformational changes 
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(Valeur, 2001). Additionally, intermolecular interactions in 
the excited state can also compete for the relaxation of 
fluorophores, such as electron, proton, and energy transfer 
processes. These relaxation pathways can compete with 
fluorescence emission if they occur on a timescale comparable 
to the lifetime of a fluorophore, which is the average time 
between excitation and return to the ground state (Lakowicz, 
2006; Valeur, 2001). On the other hand, some of these 
excited state processes, such as conformational changes 
and electron, proton, and energy transfers, may lead to a 
fluorescent species whose emission can overlap with that of 
the initially excited molecule. This emission, therefore, must 
be distinguished from “primary” fluorescence (Valeur, 2001).

Molecules with excited-state intramolecular proton 
transfer (ESIPT) properties exemplify this characteristic 
well. ESIPT involves a very rapid phototautomerism, on the 
order of subpicoseconds, of organic molecules following 
photoexcitation (Benelhadj et al., 2014; Sun & Fang, 2023; 
Wang et al., 2023). During this mechanism, an acidic proton is 
transferred to a basic site within the same molecule following 
photoexcitation (Lukeman et al., 2015). Molecules possessing 
ESIPT properties exist as enol (E) structures in the ground 
state (S0) and, upon light stimulation, transition from the 
ground state (S0) to the excited state (E*; S1). In this state, 
the molecule is energetically elevated and structurally 
unstable and can either revert to the ground state (S0) by 
fluorescence emission or form a keto structure (K*) through 

an ultrafast ESIPT reaction, thereby releasing excess energy. 
This keto structure in the excited state (K*) is also unstable 
and reaches the ground state through fluorescence emission. 
Finally, the ketonic structure in the ground state (K) undergoes 
reverse proton transfer (RPT) back to the most stable state, 
the enol structure of the ground state (E) (Felouat et al., 
2021; Wang et al., 2023).

Fluorophores are divided into two main classes: intrinsic (or 
natural) and extrinsic. Intrinsic fluorophores occur naturally 
and include aromatic amino acids (tryptophan, tyrosine, and 
phenylalanine), nicotinamide adenine dinucleotide (NADH), 
flavins, pyridoxal derivatives, and chlorophyll. Extrinsic 
fluorophores, on the other hand, are added to a sample 
when it lacks intrinsic fluorescence or to alter the spectral 
properties of the sample. Fluorescein and rhodamines, as 
mentioned earlier, are examples of widely used extrinsic 
fluorophores (Lakowicz, 2006).

After the term “fluorescence” was introduced by 
physicist and mathematician George Gabriel Stokes in 1832, 
fluorophores have been integrated into various aspects of 
daily life (Valeur, 2001). Examples include polycyclic aromatic 
hydrocarbons such as anthracene and perylene, whose 
fluorescence emission is utilized in environmental monitoring 
of oil pollution (Lakowicz, 2006); fluorescein, which is 
employed in various medical practices, such as diagnostics 
and surgical procedures (Rodrigues et al., 2022); and POPOP 
and acridine orange, used respectively in scintillation counting 

Figure 1. (a) Description of the excited singlet state; (b) Representation of the relative positions of absorption and fluorescence 
spectra.

Figure 2. Molecular structures of fluorescein, rhodamine B, POPOP, and quinine, illustrating their respective fluorescence colors.
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and as DNA probe (Lakowicz, 2006). Additionally, fluorophores 
find applications across diverse research fields, ranging from 
hydrographic studies to their role as emergency markers for 
locating individuals at sea, such as during spacecraft capsule 
landings in the ocean (Lakowicz, 2006).

Properties of fluorescent DNA probes

Rarely does a species of interest exhibit fluorescence, or 
fluorescence in a convenient region of the UV–Vis spectrum. 
For example, DNA and lipids lack intrinsic fluorescence; in 
these cases, extrinsic fluorophores are utilized as markers 
(Lakowicz, 2006). Extrinsic fluorophores that bind to 
biomacromolecules, such as membranes, proteins, and DNA, 
are commonly referred to in the literature as fluorescent 
probes (Lakowicz, 2006; Liu et al., 2023; Santos-Junior et al., 
2021).

Fluorescence lifetime (τf) and fluorescence quantum yield 
(Φf) are important properties of a fluorophore (Lakowicz, 
2006; Valeur, 2001). The fluorescence lifetime of the 
excited state is defined as the average time the molecule 
spends in the excited state before returning to the ground 
state. Generally, fluorescence lifetimes are on the order 
of 10 nanoseconds (ns) (Lakowicz, 2006). The fluorescence 
quantum yield (Φf) is the ratio of the number of emitted 
photons to the number of absorbed photons (Brouwer, 2011; 
Lakowicz, 2006; Valeur, 2001).

Several probes spontaneously bind to DNA and then exhibit 
enhanced emission (Lakowicz, 2006). Ethidium bromide (EB) 
is one of the most commonly used fluorescent DNA probes 
(Lakowicz, 2006; O’Neil et al., 2018; Osadchii et al., 2011). 
Before binding to DNA, EB exhibits low fluorescence emission 
in water, but after binding to DNA, its emission intensity 
increases by 20 to 30 times (Lakowicz, 2006; Osadchii et al., 
2011). The τf of EB is approximately 1.7 ns in water, and it 
increases to about 20 ns upon binding to DNA (Lakowicz, 2006).

Although τf and Φf are properties with straightforward 
definitions, their determination can be complex. According 
to Brouwer (2011), reliable measurements of the quantities 
of absorbed and emitted photons can be difficult to obtain. 
The author states that the simplest method for determining Φf 
for species in a dilute solution is to measure the fluorescence 
spectrum and compare its integrated intensity with the same 
quantity for a reference system with a known quantum yield 
from the equation: i i 2 s 2 s

i s fif sF / Ff n f nΦ = ×Φ ; where i
fΦ  and 

s
fΦ  are the quantum yield of the sample and the standard, 

respectively; iF  and sF  are the integrated intensities (in photon 
units) of the sample and standard spectra, respectively; 

xf  is the absorption factor, given by A1 10 xxf
−= − , where A 

= absorbance; e in  and sn  are the refractive indices of the 
sample and reference solution, respectively.

However, even when compared with a standard, 
determining Φf can be deceptively simple, according to 
Brouwer (2011). In his work, Brouwer (2011) discusses 
important and often underestimated sources of error and 
provides recommendations to minimize them. These include 
using the same absorbance at the excitation wavelength for 
both the sample and reference, utilizing as much as possible 

the same spectral range of emission and similar emission 
intensities for both the sample and reference, among others.

In addition to the recommendations above, Brouwer 
(2011) emphasizes the importance of selecting appropriate 
standards for determining Φf in solution. He highlights the 
need for more standards with reliable quantitative data, 
particularly for wavelength regions below 400 nm and above 
650 nm. Furthermore, according to the author, reference 
materials are necessary for determining low Φf values, or 
clear procedures should be established for dealing with large 
differences in fluorescence intensity between the sample 
and the reference.

The most intense emissions are displayed by fluorophores 
with Φf approaching unity, such as rhodamines (Brouwer, 2011; 
Lakowicz, 2006). Although many fluorophores are selected 
for application due to their high Φf, it is important to note 
that these high Φf values often result from high emission 
rates of the fluorophore, which generally correspond to short 
lifetimes. However, the τf is also important as it determines 
the time available for the fluorophore to interact or diffuse 
in the environment and, therefore, the information available 
from its emission (Lakowicz, 2006).

Valeur (2001) reports that many parameters can affect 
Φf and τf in the condensed phase, such as temperature, 
pH, polarity, viscosity, hydrogen bonding, and the presence 
of quenchers (fluorescence inhibitors, such as molecular 
oxygen). Therefore, attention should be paid to potential 
misinterpretations caused by the simultaneous effects of 
several of these factors.

Rhodamines, which exhibit high Φf, display narrow 
absorption and emission spectra and small Stokes shifts 
(Valeur, 2001). The Stokes shift (ΔS) is the difference between 
the maximum of the absorption band and the maximum of 
the emission band, expressed in wavenumbers (Figure 3). 
This phenomenon, observed by G. G. Stokes, occurs because 
fluorescence typically happens at lower energies or longer 
wavelengths than absorption (Lakowicz, 2006; Valeur, 2001).

According to Brouwer (2011), broad absorption and 
emission bands and high ΔS values are favorable properties. 
Additionally, Valeur (2001) suggests that, from a practical 
standpoint, detecting a fluorescent species is easier when 
the ΔS is larger. This is because high ΔS values contribute 
to increasing the clear fluorescence signal and reducing 
background interference (Le et al., 2018). Another important 
property of a fluorescent probe is its photostability, as 
nearly all fluorophores are photobleached under continuous 

Figure 3. Definition of the Stokes shift.
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illumination (Lakowicz, 2006). According to Burrows et al. 
(2007), photobleaching limits the total number of photons 
a compound can absorb and convert into fluorescent 
light. However, although the environment may influence 
photostability, Lakowicz (2006) indicates that there do not 
appear to be general principles that can be used to predict it.

The use of extrinsic fluorophores is one of the most 
widely employed analytical approaches for DNA studies 
(Bertozo et al., 2023; Osadchii et al., 2011). Given that nucleic 
acids are ubiquitous components of cells, investigations into 
DNA, including its structural alterations, sequencing, and 
interactions with micro- and macromolecules, are crucial for 
advancing numerous research fields such as biotechnology, 
pharmaceutical development, and diagnostics (Bertozo et al., 
2023; Mohammadi et al., 2023). Regarding the binding modes 
of fluorescent probes with DNA, they can interact through 
three main mechanisms: intercalation between base pairs, 
binding to the major or minor grooves, or electrostatic 
interactions between phosphate groups and charged probes 
(Felouat et al., 2021; Li et al., 2012; Mallick et al., 2018; 
Sirajuddin et al., 2013). According to Sirajuddin et al. (2013), 
intercalation is generally favored by the presence of fused 
aromatic rings in the molecular structure of the fluorescent 
probe and prevented in probes with less extended aromatic 
systems. Meanwhile, probes that bind to grooves typically have 
aromatic rings connected by bonds that allow free rotation. 
Furthermore, according to Sirajuddin et al. (2013), in their 
review of interactions between DNA and small molecules, 
UV–Vis absorption and fluorescence emission spectroscopies 
are the most commonly used techniques for studying these 
modes of molecule–DNA binding, along with cyclic voltammetry. 
While several other techniques are also employed, such as 
viscosity experiments, electrophoresis, circular dichroism, 
Nuclear Magnetic Resonance (NMR), thermal denaturation 
studies, mass spectrometry, infrared spectroscopy, Raman 
spectroscopy, differential pulse voltammetry (Dumat et al., 

2016; Hackl et al., 1997; Lindberg & Esbjorner, 2016; 
Mudasir et al., 2010; Pérez-Flores et al., 2005; Santos-
Junior et al., 2021; Sirajuddin et al., 2013; Swathi et al., 
2023; Tisoco et al., 2023; Xie et al., 2023; Yang et al., 2017).

EB binds to DNA by intercalating its planar aromatic ring 
between the DNA base pairs (Bertozo et al., 2023; Lakowicz, 
2006). Many DNA fluorescent probes, such as acridine 
orange, also bind through intercalation (Bertozo et al., 
2023; Lakowicz, 2006; Sirajuddin et al., 2013). Other probes 
bind to DNA grooves, such as 4’,6-diamidino-2-phenylindole 
(DAPI) and Hoechst dyes, which bind to the minor groove, 
Figure 4 (Bertozo et al., 2023; Lakowicz, 2006).

Despite the favorable properties of commercially available 
DNA fluorescent probes, they may pose potentially toxic 
effects. For example, although EB is cost-effective and highly 
sensitive, it presents significant biological risks, including 
mutagenicity, carcinogenicity, and teratogenicity, depending 
on the organism and exposure conditions (El-Din et al., 
2021; O’Neil et al., 2018; Soriano et al., 2016). Additionally, 
acridine compounds can inhibit topoisomerases, leading to 
DNA damage, disruption of DNA repair and replication, and 
ultimately, cell death (Sirajuddin et al., 2013).

Benzoxazoles and naphthoxazoles

Oxazoles constitute a class of aromatic heterocycles 
featuring five-membered rings containing nitrogen and 
oxygen atoms (Deng et al., 2022; Guerrero-Pepinosa et al., 
2021). The oxazole ring is present in many naturally occurring 
compounds, as reported by Thakur et al. (2022). Oxazole 
derivatives can readily bind to various receptors in biological 
systems through non-covalent interactions (Deng et al., 2022; 
Guerrero-Pepinosa et al., 2021). This property makes these 
compounds attractive for the design of novel molecules 

Figure 4. Molecular structures of fluorescent DNA probes: EB, acridine orange, DAPI, and Hoechst dyes.
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of biotechnological interest (Deng et al., 2022; Guerrero-
Pepinosa et al., 2021; Ooyama et al., 2011).

When the oxazole ring is substituted at positions 4 and 
5 by benzene and naphthalene rings, the resulting derivatives 
are referred to as benzoxazole and naphthoxazole (linear 
or angular), respectively (Figure 5) (Santos et al., 2022).

Benzoxazole and naphthoxazole derivatives exhibit promising 
photophysical properties, including a broad spectral range, 
intense absorption and emission, fluorescence in the crystalline 
state, and significant enhancement of fluorescence upon binding 
to biological targets. An example of this is oxazole yellow 
(YO) (Figure 6), a DNA fluorescent probe (Ghodbane et al., 
2015; Inoue et al., 1999; Murade et al., 2009; Ooyama et al., 
2011; Phatangare et al., 2013; Zhang et al., 2013). These 
properties have facilitated their use in important applications, 
such as scintillators, organic light-emitting materials, and 
fluorescent probes for biological systems (Ghodbane et al., 
2015; Ooyama et al., 2011; Phatangare et al., 2013; Rubio & 
Zanocco, 2016; Santos et al., 2022; Zhang et al., 2013).

Among the various synthetic methodologies described 
in the literature, benzoxazoles and naphthoxazoles can be 
readily obtained through one-pot multicomponent reactions 
(Santos et al., 2022; Thakur et al., 2022). These methodologies 
facilitate complex syntheses and are environmentally 
friendly and offer advantages such as decreased formation of 
byproducts, increased atom economy, energy efficiency, and a 
reduction in the number of reaction steps (Thakur et al., 2022). 
In addition to their attractive properties, ease of synthesis 
and molecular modification, which provide structural diversity, 
benzoxazole and naphthoxazole derivatives are photostable and 
exhibit low toxicity (Deng et al., 2022; Kurutos et al., 2022; 
Liu et al., 2019; Rubio & Zanocco, 2016; Santos et al., 2022).

Methodology

The systematic review was conducted through a 
bibliographic search carried out in March 2023, encompassing 
articles published in the last 10 years (2012-2023). 
The search was performed across three research databases: 
ScienceDirect, SciFinder, and Web of Science. Descriptors 
and Boolean operators used in the search: naphthoxazole OR 
benzoxazole AND DNA probe AND fluorescent. Articles were 
selected based on the following inclusion criteria: original 
articles published in scientific journals; articles containing 
the descriptors (naphthoxazole OR benzoxazole AND DNA 
probe AND fluorescent) in the title, abstract, or keywords; 

and articles evaluating the interaction between oxazole 
derivatives and DNA. The selection process was independently 
conducted by three researchers, adhering strictly to the 
established inclusion criteria. Any disagreements were 
resolved through consensus among the investigators.

Results and discussion

The search across the three defined databases yielded 
51 articles: 41 from the Web of Science, 9 from ScienceDirect, 
and 1 from SciFinder. After applying the pre-established 
inclusion criteria and removing duplicates, 4 articles 
remained. One of these was excluded because, although it 
investigating a benzoxazole derivative, DNA binding studies 
were conducted using a benzothiazole derivative as the 
representative compound. Consequently, 3 articles were 
selected for discussion in this systematic review. A flowchart 
illustrating the progressive selection of studies is presented 
in Figure 7.

Of the three selected articles, two investigated the 
interactions of a total of five naphthoxazoles with DNA, 
published in 2013 and 2014. The third and most recent 
study, from 2021, conducted similar investigations with two 
benzoxazoles (Figure 8).

The studies reported in the last decade

Molecules with ESIPT properties constitute a class 
of fluorophores of interest due to their attractive 

Figure 5. Classification of oxazole derivatives based on substitution at positions 4 and 5 of the oxazole ring.

Figure 6. Oxazole yellow (YO), a benzoxazole derivative that 
acts as a fluorescent DNA probe.
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photoluminescent features, such as dual fluorescence 
emission, large ΔS, and environment-sensitive emission 
(Durko-Maciag et al., 2023; Ma et al., 2023; Sun & Fang, 
2023; Wang et al., 2023; Yin & Fang, 2023). To explore these 
properties, Felouat, Massue, and Ulrich synthesized and 
assessed the photophysical properties of two benzoxazole 
derivatives (1 and 2) and investigated their interactions with 
DNA (Figure 9) (Felouat et al., 2021).

The dual emission of organic compounds with ESIPT 
properties is a critical feature, for applications such as 
Organic Light-Emitting Diodes (OLEDs) or their application 
in studies involving interactions with biomacromolecules 
such as DNA (Benelhadj et al., 2014; Felouat et al., 2021). 
Thus, Felouat et al. (2021) investigated the influence of 
electron-donating and electron-withdrawing substituents on 
the compounds, as well as the effect of functionalizing the 

benzoxazole nucleus with long oligo(ethylene glycol) (OEG) 
chains, on the dual emission.

The photophysical properties of benzoxazoles 1 and 2 were 
evaluated in solvents of varying polarities as well as in polymer 
films. They exhibited similar absorption profiles with minimal 
dependence on solvent nature. Furthermore, benzoxazoles 
1 and 2 displayed broad and high-intensity main absorption 
bands, with maximum absorption wavelengths (λabs) in the 
ranges of 378/390 nm and 385/392 nm, and molar absorptivity 
(ε) values spanning from 18500 to 35100 M-1 cm-1 and 16700 to 
24100 M-1 cm-1, respectively.

Analyzing the structural differences between benzoxazoles 
1 and 2, Felouat et al. (2021) observed that the introduction 
of two OEG chains into the benzoxazole ring resulted in 
a slight bathochromic shift (red shift) and hypochromism 
of the main absorption band. In contrast, protonation of 

Figure 7. Flowchart illustrating the studies included in the systematic review.

Figure 8. Representation of the generic structures of naphthoxazole and benzoxazole derivatives investigated for their interaction 
with DNA in 2013, 2014, and 2021, respectively.
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the aromatic amine by bubbling gaseous HCl into solutions 
of benzoxazoles 1 and 2 in dichloromethane (protonated 
dichloromethane) induced a pronounced hypsochromic 
shift (blue shift) for both compounds, a characteristic that 
is consistent with previous studies (Benelhadj et al., 2014).

As a general practice, the excitation wavelength (λex) used 
to record the emission spectrum of a fluorescent compound 
typically corresponds to the λabs (Rangel & Merçon, 2012). 
Based on the absorption profiles of benzoxazoles 1 and 2, λex 
was set at 390 nm for both compounds. Upon excitation at 
390 nm, benzoxazoles 1 and 2 exhibited one or two intense 
emission bands attributed to the radiative decay of excited 
states K* or E*/K*, with emission wavelengths (λem) ranging 
from 470-582 nm and 471-599 nm, respectively.

The observed dual emission (E*/K*) for benzoxazole 
1 in all solvents, except protonated dichloromethane, 
highlights the importance of the electron-donating group 
in the benzofuranol moiety and the electron-withdrawing 
group in the benzoxazole nucleus for increasing the pKa of 
benzofuranol and the pKb of benzoxazole. This stabilization 
of the enol isomer in the excited state (E*) enhances the 
likelihood of observing dual emission, as previously reported 
by Benelhadj et al. (2014). The exclusive observation of the 
K* band, accompanied by a blue shift in λabs, for benzoxazole 
1 in protonated dichloromethane underscores the significance 
of the structural characteristics of this compound class. This 
is attributed to the protonation of the tertiary amine, which 
lowers the pKa of benzofuranol (Benelhadj et al., 2014).

Furthermore, it was observed that the spectral separation 
between the E* and K* bands was particularly pronounced in 
the nonpolar solvent toluene, where a broad emission was 
recorded, as indicated by the white emission observed for 
benzoxazoles 1 and 2. It is noteworthy that organic compounds 
emitting white light have various practical applications in 
optical devices and materials (Wei et al., 2023). The emission 
spectra of benzoxazoles 1 and 2 in the solid state exhibited 
a similar trend to that observed in the solution. The nature 
of the polymeric matrix did not show a significant influence 
on the E*/K* intensity ratio.

Regarding the relative Φf of benzoxazoles 1 and 2, 
Felouat et al. (2021) observed low values in solution (Φf = 
0.01 – 0.17) using rhodamine 6G as a reference (Φf = 0.88 in 
ethanol, λex = 488 nm). These values are consistent with 
those observed for similar derivatives in previous studies 
(Heyer et al., 2017a; Heyer et al., 2017b). However, it is 
important to consider the potential differences in emission 
intensity between the sample and the reference, as 
discussed in earlier sections. Furthermore, the Φf reported 
for rhodamine 6G in ethanol (Φf = 0.88, λex = 488 nm) differs 
from that cataloged by Brouwer (2011) in his review on the 
choice of reference standards for determining the Φf in 
solution (Φf = 0.94 in ethanol, λex = 488 nm). This discrepancy 
underscores the challenges associated with determining the 
Φf of photoluminescent species.

Regarding the absolute Φf of benzoxazoles 1 and 2, 
determined in polymer films using an integrating sphere, 
higher values ​​were observed (Φf = 0.07-0.33). The average 
lifetime was typical for fluorescent organic molecules, falling 
within the nanosecond range.

The environment-dependent fluorescence profile and 
the presence of the 2-(2-methoxyethoxy)ethylamino group 
in the benzoxazole, which enhances solubility in aqueous 
media and serves acts as a DNA anchoring group through 
hydrogen bonding with base pairs, prompted the authors 
to investigate the interaction of these derivatives with DNA 
(Shi et al., 2016). Consequently, Felouat et al. (2021) studied 
the interaction of benzoxazole derivatives with DNA, focusing 
on benzoxazole 1 as the model.

DNA binding studies were conducted by monitoring changes 
in the absorption and emission properties of benzoxazole 
1 (12 µM) upon the addition of increasing amounts of 
calf thymus DNA (CT-DNA) in a 1:1 mixture of CH3CN/
Tris(hydroxymethyl)aminomethane-HCl buffer (pH 7.4).

The addition of aliquots of CT-DNA (0-100 μM) to 
benzoxazole 1 in solution resulted in significant changes to 
its absorption profile. Initially, with the incorporation of 10-
60 μM of CT-DNA, there was a gradual increase in ε. However, 

Figure 9. Benzoxazole derivatives 1 and 2 synthesized by Felouat et al. (2021).
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the elevation of CT-DNA concentration (60-100 μM) triggered 
a pronounced decrease in ε, reaching a plateau at 90 μM. 
This substantial change at higher DNA concentrations may, 
according to the authors, indicate a second mode of binding 
occurring after an initial mode of interaction. Despite the 
changes in ε, no shift in λabs was observed.

According to Ressler et al. (2023), changes in the absorption 
intensity of a compound in the presence of DNA can indicate 
its mode of interaction with this biomacromolecule. 
Ressler et al. (2023) propose that intercalation leads to 
conformational changes in DNA, resulting in hypochromism. 
This observation is supported by previous studies, such as that 
of Manna and Chakravorti (2012), who assert that spectral 
changes, including hypochromism, bathochromic shift, and 
the presence of an isosbestic point, are indicative of the 
intercalation mode of interaction. Conversely, binding to the 
DNA grooves causes the unwinding of the DNA helix. Hydrogen 
bonds between base pairs decrease with the unwinding of 
the DNA helix, consequently an increase in the absorption of 
DNA bases. This unwinding results in a hyperchromic effect 
(Ressler et al., 2023).

In the absence of CT-DNA, excitation at 390 nm resulted 
in a broad emission band with λem at 604 nm, attributed to 
the K* decay. Upon the addition of initial aliquots of CT-DNA 
(0-60 μM), a gradual decrease in emission intensity at 604 nm 
was observed. This fluorescence quenching is likely due to 
a photoinduced electron transfer (PET) process from purine 
bases to the K* state of benzoxazole 1, indicating an initial 
mode of interaction with DNA. Increasing the concentration 
of CT-DNA (60-100 μM) led to an enhancement in emission 
intensity and the emergence of a primary emission band 
with a blue shift (λem = 579 nm), accompanied by the 
appearance of a second band at higher energies (λem = 
475 nm). The observation of the typical E*/K* dual emission 
is consistent with a sudden change in the polarity of the 
environment. Hydrogen bonds are known to stabilize the E* 
tautomer, suggesting that an intercalation mode of binding 
may prevail at higher DNA concentrations. Additionally, the 
full width at half maximum (FWHM) was also reduced after 
DNA binding (FWHM = 3540 cm-1 for 0 μM CT-DNA; FWHM = 
2740 cm-1 for 100 μM CT-DNA), suggesting a restriction of 
molecular motions consistent with an intercalation mode 
of binding, according to Felouat et al. (2021).

In 2013 and 2014, Wang and his research team published 
two studies investigating the interactions of naphthoxazoles 
with DNA, using methodologies similar to those employed in 
the recent work by Felouat et al. (2021). Due to the limited 

number of studies on the interaction of naphthoxazole 
derivatives interactions with DNA, Wang et al. (2013) 
synthesized and evaluated four naphthoxazoles (3–6) 
(Figure 10) as DNA ligands. In this study, the interaction 
between naphthoxazoles and DNA was assessed using 
absorption and emission titrations, to analyze changes in 
absorption and emission properties as well as viscosity.

Changes in the absorption and emission properties of the 
four synthesized naphthoxazoles (3–6) were analyzed following 
the addition of increasing amounts of CT-DNA in Tris-HCl 
buffer. Wang et al. (2013) observed a gradual decrease in the 
absorption intensity of naphthoxazoles 3–6 (40 µM) gradually 
decreased with the addition of increasing concentrations 
of CT-DNA, with the hypochromism being most pronounced 
for naphthoxazole 4. A slight bathochromic shift of the 
main absorption band was observed for each of the four 
naphthoxazoles.

The spectral characteristics of naphthoxazoles 3–6 are 
summarized in Table 1. The DNA binding constants (K), derived 
from absorption spectra, ranged from 3.58 x 103 M−1 to 5.29 x 
104 M−1, with the highest value corresponding to naphthoxazole 
4. Wang et al. (2013) compared the K values of naphthoxazoles 
3–6 with that of the complex [Ru(bpy)2(dppz)]2+ (4.90 x 
106 M−1), with that of the intercalating complex, but all were 
lower than this reference value (Deshpande et al., 2009; 
Wang et al., 2021).

As previously discussed, changes in absorption properties 
suggest that naphthoxazoles 3–6 interact with DNA through 
intercalation. The emission spectra of naphthoxazoles 
3–6 exhibited increased emission intensity with rising 
concentrations of CT-DNA. This increase in emission intensity 
ranged from 1.53 times (for 6) to 1.84 times (for 3) in the 

Figure 10. Naphthoxazoles 3–6 synthesized by Wang et al. (2013).

Table 1. Spectroscopic properties of naphthoxazoles 3–6 in 
the presence of CT-DNA.

Naphthoxazoles λabs K (M−1) Hypochromism H (%)a

3 219 5.06 x 103 42.13

4 220 5.29 x 104 56.04

5 221 3.58 x 103 44.21

6 221 7.75 x 103 38.08

aH% = 100 (Afree – Abound) / Afree
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presence of DNA. According to the authors, supported by 
previous studies, the restricted mobility of naphthoxazoles 
3–6 within the hydrophobic environment of the DNA helix results 
in decreased vibrational relaxation modes, which accounts for 
the observed enhancement in emission intensity (Tan et al., 
2005). The DNA binding constants, derived from emission 
spectra, were determined and ranged from 4.18 x 103 (for 5) 
to 5.29 x 104 M−1 (for 4). Wang et al. (2013) noted that the 
variation in values compared to those obtained from absorption 
spectra can be attributed to the use of different spectroscopic 
methods. Furthermore, employing the continuous variation 
method with emission data, Wang et al. (2013) determined the 
binding stoichiometries of these derivatives with DNA. They 
observed that naphthoxazoles 3, 4, and 6 each exhibited a 
naphthoxazole/DNA binding ratio of approximately 1:1, whereas 
naphthoxazole 3 displayed a ratio of 1.5:1.

To further elucidate the interaction between the 
synthesized naphthoxazoles (3–6) and DNA, Wang et al. (2013) 
also conducted viscosity tests. These tests are important 
because, as noted by Wang et al. (2014), hydrodynamic 
evaluations — sensitive to change in molecular length — are 
considered among the most definitive methods for determining 
the binding model in solution when crystallographic data is 
not available.

According to Deshpande et al. (2009), classical intercalation 
of a ligand into DNA typically increases the viscosity of a 
DNA solution due to the increased separation of base pairs 
at the intercalation site, which consequently increases the 
overall molecular length of the DNA. In contrast, partial 
intercalation can cause DNA helix to twist or bend, leading 
to a reduction in its effective length and viscosity. Therefore, 
Wang et al. (2013) observed a consistent increase in the 
relative viscosity of DNA (0.30 mM CT-DNA at 25 ºC) with 
increasing concentrations of naphthoxazoles 3–6, suggesting 
that these compounds likely intercalate between the base 
pairs of DNA. One year later, Wang et al. (2014) synthesized 
a new naphthoxazole (7) (Figure 11) and, consistent with 
their earlier study, evaluated its interaction with DNA through 
absorption and emission titration studies, as well as viscosity 
measurements.

In this study, Wang et al. (2014) observed similar behavior 
for the new naphthoxazole (7) compared to the previously 
studied naphthoxazoles 3–6 (Wang et al., 2013). Specifically, 
upon addition of increasing concentrations of CT-DNA (Tris-
HCl buffer, pH 7.2), Wang et al. (2014) noted a decrease in 
absorption intensity (hypochromism) of the main absorption 

band (λabs = 232 nm) of naphthoxazole 7 (40 µM). This 
observation suggests that naphthoxazole 7 interacts with 
DNA through intercalation, similar to naphthoxazoles 3–6. 
According to Wang et al. (2014), naphthoxazole 7 exhibited 
a hypochromic effect of 23.58%, which is lower than that 
observed for naphthoxazoles 3–6. From the absorption 
spectra, Wang et al. (2014) determined the DNA binding 
constant (K) for naphthoxazole 7, which was 6.16 x 103 M−1. 
This value is close to the K value for naphthoxazole 3 (5.06 x 
103 M−1) but is lower than that of the [Ru(bpy)2(dppz)]2+ 
complex (4.90 x 106 M−1), corroborating what was observed 
for naphthoxazoles 3–6.

The emission spectra of naphthoxazole 7 were recorded 
at the λex of 300 nm, and similarly to naphthoxazoles 3–6, 
naphthoxazole 7 demonstrated an increase in emission 
intensity with higher concentrations of CT-DNA. According to 
the authors, the emission intensity of naphthoxazole 7 was 
1.86 times higher in the presence of DNA compared to its 
fluorescence in the absence of DNA. Thus, naphthoxazole 
7 exhibited a greater emission intensity when interacting with 
DNA compared to naphthoxazoles 3–6. Furthermore, using 
the continuous variation method applied to emission data, 
Wang et al. (2014) determined that naphthoxazole 7 showed 
a 1:1 binding stoichiometry with DNA. This is the binding ratio 
is consistent with naphthoxazoles 3, 4, and 6, as reported 
earlier. Wang et al. (2014) also conducted viscosity tests with 
naphthoxazole 7. Consistent with observed for naphthoxazoles 
3–6, the authors reported a steady increase in the relative 
viscosity of CT-DNA (200 µM) with a rising concentration of 
naphthoxazole 7. Wang et al. (2014) performed viscosity tests 
whith naphthoxazole 7 and naphthoxazole 3 for comparison 
purposes. It was observed that the increase in relative DNA 
viscosity was more pronounced with the addition of increasing 
concentrations of naphthoxazole 7.

Conclusion

The literature search conducted in this systematic 
review revealed few studies focused on the evaluation of 
the interaction between benzoxazoles and naphthoxazoles 
with DNA. However, the works published in the last decade 
and selected based on the systematic search demonstrate 
the potential of these compounds to interact with DNA and 
exhibit enhanced fluorescence emission. All benzoxazole 
and naphthoxazole derivatives synthesized and evaluated in 
the studies discussed in this review displayed DNA binding 
behavior, with the mode of interaction predominantly being 
intercalation at increasing DNA concentrations. Furthermore, 
they all exhibited an increase in fluorescence emission 
intensity with rising DNA concentrations. These results 
suggest that benzoxazole and naphthoxazole derivatives have 
promising uses as fluorescent DNA probes. Additionally, given 
their broad spectrum of biological activities reported in the 
literature, these derivatives may aid in understanding the 
chemical basis of mechanisms of action of substances targeting 
DNA and in the design of targeted drugs. In conclusion, the 
encouraging results described in this review, together with the 
limited number of studies on the interaction of this compound Figure 11. Naphthoxazole 7 synthesized by Wang et al. (2014).
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class with DNA, highlight this is an area of research that has 
significant potential for further exploration and development.
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